SOLARIANS
На главную


ЗАМЕТКИ ОБ УНИПОЛЯРНОМ ГЕНЕРАТОРЕ


Особенностью фундаментальных открытий, великих достижений интеллекта является то, что они имеют непреходящую власть над воображением думающего человека. Незабвенный эксперимент Фарадея с диском, вращающимся между двумя полюсами магнита, породивший столь прекрасные плоды, давно стал тривиальным опытом и, вместе с тем, этот эмбрион современных генераторов и моторов тревожит нас и заслуживает быть в центре внимательного изучения благодаря некоторым своим особенностям.

Представим, например, случай, когда диск из железа или другого метала вращается между разноименными полюсами магнита и поверхности полюсов полностью покрывают обе стороны диска и, предположим, ток снимается или направляется контактами равномерно во всех переферийных точках диска. Рассмотрим сначала случай мотора. Во всех обычных моторах его работа зависит от движения или изменения результирующих магнитных сил притяжения, приложенных к ротору, этот процесс является результатом либо некоторых механических устройств мотора, либо действия токов с определенными характеристиками. Мы можем объяснить работу такого мотора просто, как мы объясняем работу водяной мельницы. Однако, если обратиться к вышеприведенному примеру с диском полностью окруженному поверхностями полюсов, мы не найдем движения магнитных сил и, насколько нам известно, никакого движения вообще, тем не менее мы будем наблюдать вращение. Здесь, обычные соображения не применимы; мы не можем дать даже поверхностное объяснение, как для обычных моторов, таким образом, принципы работы станут ясными для нас только когда мы поймем глубинную природу вовлеченных сил и проясним загадку невидимого механизма сцепления.

Рассмотренный как генератор, диск оказывается столь же интересным объектом изучения. В дополнение к его способности создавать токи одного направления без использования переключающих устройств, такая машина отличается от обычных генераторов тем, что в ней нет сил реакции между ротором и полем. Роторный ток имеет тенденцию создавать магнитное поле под прямыми углами к потоку внешнего поля, однако, так как ток снимается равномерно со всех периферийных точек, а внешняя цепь может быть организована идеально симметрично к полю магнита, никакой реакции не возникает. Это, однако, правильно только пока магниты слабо возбуждены, когда же магниты более или менее насыщены, оба магнитных поля, видимо, взаимодействуют друг с другом под прямыми углами.

Исходя из вышесказанного, можно предположить, что эффективность такой машины должна быть, при том же весе, намного большей чем любой другой машины в которой роторный ток стремится скомпенсировать магнитное поле. Экстраординарная эффективность униполярного генератора Форбса и эксперименты автора подтверждают эту точку зрения.

Далее, оборудование с помощью которого такая машина может быть построена и возбуждена, поражает, но это может быть объяснено – кроме отсутствия реакции ротора – благодаря постоянству тока и отсутствию самоиндукции.

Если полюсы не покрывают диск полностью с обеих сторон, тогда, конечно, если только диск не будет правильно разделен, машина будет очень неэффективной. И опять, в этом случае многое можно подметить. Если диск вращался и поток поля был прерван, ток в цепи будет продолжать идти и магниты будут терять свою силу сравнительно медленно. Причина этого будет ясна, если мы рассмотрим направление системы токов в диске.

Посмотрите на диаграмму Фиг.1, где d обозначает диск со скользящими контактами B и B` на оси и переферии, N и S обозначают два полюса магнита.


Если полюс N будет сверху (перед диском, биже к зрителю – прим. перев.), как показано на диаграме, диск располагается в плоскости листа бумаги и вращается в направлении, указанном стрелкой D, то ток в диске будет течь от центра к переферии, как показано стрелкой A. Так как действие магнитного поля более или менее сосредоточено в пространстве между полюсами NS, другие части диска можно считать не активными. Ток на показанной схеме, таким образом, не полностью будет идти через внешнюю цепь F, но будет замкнут через сам диск и, в общем случае, если схема будет в какой-то части похожа на указанную, намного большая часть сгенерированного тока не появится снаружи, так как цепь F, фактически, замкнута накоротко через неактивные части диска. Направление результирующих токов, в итоге, можно принять такими, как показано пунктирными линиями и стрелками a b c d, изучение рисунка показывает, что одна из двух частей вихревого тока, а именно A B` m B будет стараться скомпенсировать магнитное поле, тогда как другая часть – A B` n B, будет иметь противоположный эффект. Поэтому часть A B` m B та, которая приближается (курсив здесь и далее автора – прим. перев.) к полю будет отталкивать его линии, тогда как часть A B` n B, которая покидает поле, будет собирать силовые линии на себе.

В результате этого, будет присутствовать постоянная тенденция уменьшить ток на пути A B` m B, тогда когда на другой стороне, по пути A B` n B, такого противодействия не будет и эффект последней части или пути будет более или менее преобладать над первой. Сумарный эффект обоих рассматриваемых частей токов может быть представлен одним единственным током того же направления, которое усиливает поле. Другими словами, вихревые токи, циркулирующие в диске, будут усиливать магнитное поле. Это достаточно противоречивый результат, по сравнению с тем, что мы могли бы предположить изначально, и естественно ожидать, что результирующий эффект роторных токов должен бы быть таким, чтобы сопротивляться потоку поля, как, в общем, и происходит когда первичный и вторичный проводники приведены к индуктивному взаимодействию друг с другом. Однако, мы должны помнить, что в данном случае это результат именно специфического взаимного расположения двух выбранных путей тока и последующего выбора пути, создающего меньшее сопротивление своему течению. Из этого мы видим, что вихревые токи, текущие в диске, частично усиливать поле, и по этому, когда поток поля прерван, токи в диске будут продолжать течь и поле магнита будет терять свою силу относительно медленно и может даже сохранить некоторую силу пока вращение диска продолжается.

Результат будет, конечно, сильно зависить от сопротивления и геометрических размеров пути результирующего вихревого тока и от скорости вращения; именно эти элементы и определяют замедление этого тока и его положение относительно поля. При некоторой скорости эффект усиления поля будет максимальным, далее, при больших скоростях, он постепенно упадет до нуля и, в конечном итоге, обратится вспять, этот результирующий вихревой ток будет уже ослаблять поле. Эффект может быть наилучшим образом продемонстрирован экспериментально созданием полей NS, N`S`, свободно передвигающихся вокруг оси концентрически с осью диска. Если последний вращался, как и ранее, в направлении стрелки D, поле будет сдвигаться в том же направлении с крутящим моментом, который до некоторой точки будет увеличиваться с увеличением скорости вращения и далее упадет и, пройдя через нулевую точку, в итоге станет отрицательным; то есть, поле будет вращаться в противоположную сторону по отношению к диску. В экспериментах с моторами переменного тока в которых поле сдвигалось токами различной фазы, были обнаружены интересные результаты. При очень низких скоростях вращения поля, двигатель мог показать крутящий момент в 900 фунтов или более, измеренный на шкифе диаметром 12 дюймов. Когда скорость вращения полюсов была увеличена, крутящий момент пропал и, в итоге, обратился в нуль и стал отрицательным, и далее ротор начал вращаться в противоположную сторону по отношению к полю. Возвращаясь к предмету обсуждения, предположим, что условия были таковы, что вихревые токи, созданные вращением диска усилили напряженность поля и, предположим, последнее было постепенно убрано пока диск продолжал вращаться с увеличивающейся скоростью. Ток, изначально возникший, может быть достаточным далее для поддержания самого себя и, даже, увеличивать свою силу, и, в итоге, мы имеем случай «аккумулятора тока» Сэра Вильяма Томсона.

Однако из вышеописанных рассуждений видно, что для успеха эксперимента будет необходимо использовать неразделенный диск, так как если диск будет иметь радиальное деление, вихревые токи не сформируются и самовозбуждение не возникнет. Если используется такой радиально разделенный диск, необходимо соединить спицы проводящим ободом или любым другим способом для формирования симметричной системы замкнутых цепей.

Действие вихревых токов может быть использовано для возбуждения машины любой конструкции. Например, на Фиг. 2 и 3 показана конфигурация с помощью которой может быть возбуждена машина с дисковым ротором. Здесь несколько магнитов NS, NS, установленые радиально с каждой стороны металлического диска D, несут на его ободе множество изолированных катушек, CC. Магниты формируют два отдельных поля: внутреннее и внешнее; сплошной диск вращается в поле, ближайшем к оси, а катушки - в поле дальше от нее. Предположим, что магниты слабо усилены в начале, они могут быть усилены действием вихревых токов в сплошном диске, таким образом, усиливая поле в области переферических катушек. Хотя нет сомнений, что при благоприятных условиях машина может быть возбуждена этим или сходным образом, есть достаточно экспериментальных оснований это утверждать, такой способ возбуждения был бы неэкономным.

Однако униполярный генератор или мотор, такой, как изображенный на Фиг. 1, может быть эффективно возбужден просто правильным делением диска или цилиндра в котором, могут возникать токи и будет правильным избежать катушек, которые обычно используются. Такой план проиллюстрирован на Фиг. 4. Диск или цилиндр D сделан так, чтобы вращаться между двумя полюсами N и S магнита, который полностью покрывает его с обеих сторон, контуры диска и полюсов представлены кругами d и d` соответственно.

Верхний полюс не показан в целях ясности рисунка. В центральной части магнитов предполагаются отверстия через которые проходит ось C. Если необозначенный полюс будет внизу и диск будет вращаться в соответствии с правилом винта, ток будет, как и прежде, идти от центра к переферии и может быть снят подходящими скользящими контактами B, B` на оси и переферии соответственно. В этой конфигурации, ток текущий через диск и внешнюю цепь не будет иметь никакого заметного влияния на магнитное поле.

Но давайте представим, что диск поделен спирально, как показано сплошными и пунктирными линиями, Фиг. 4. Разница потенциалов между точкой на оси и точкой на переферии останется прежней, как по знаку так и по значению. Единственная разница будет в том, что сопротивление диска увеличится и падение потенциала между точкой на оси и точкой на переферии увеличится когда тот же ток будет проходить через внешнюю цепь. Однако, так как ток будет вынужден следовать линиям раздела, мы увидим, что он будет стараться либо усилить либо ослабить поле, и это будет зависеть, при прочих равных условиях, от направления линий раздела. Если линии раздела будут такими как показано сплошными линиями на Фиг. 4, ясно, что если ток будет течь в том же направлении как и раньше, то есть от центра к переферии, он будет создавать эффект усиления поля магнита, тогда как если разделение будет таким как показано пунктирными линиями, то создаваемый ток будет ослаблять магнит. В первом случае машина будет способна самовозбудиться когда диск вращается в направлении стрелки D, а во втором случае направление вращение должно быть обратным. Два таких диска могут быть совмещены, однако, как показано, эти два диска вращаются в противоположных полях и в том же или в противоположном направлении.

Такая же конфигурация, конечно, может быть использована в машине, в которой вместо диска вращается цилиндр. В таких униполярных машинах, описанной конструкции, обычные катушки и полюсы могут быть опущены и машина может состоять только из цилиндра или двух дисков, заключенных в металлический корпус.

Вместо спирального разделения диска или цилиндра, как показано на Фиг. 4, лучше поместить один или более витков между диском и контактным кольцом на переферии, как показано на Фиг. 5.

Генератор Форбса, к примеру, может быть возбужден таким образом. По опыту автора, вместо съема тока с двух таких дисков, как обычно, посредством скользящих контактов, выгоднее использовать гибкий проводящий ремень. Диски, в этом случае изготавливаются с широкими фланцами, дающими прекрасную поверхность для контакта. Ремень должен быть сделан так, что бы быть натянутым на фланцах и пружинить, растягиваясь. Два года назад автором были сконструированы несколько машин с ременным контактом, которые работали удовлетворительно, но из-за нехватки времени это направление работы было временно приостановлено. Несколько решений, отмеченных здесь, было использовано автором в области моторов переменного тока некоторых типов.

Никола Тесла

The Electrical Engineer, N.Y., Sept. 2, 1891.

На главную

Яндекс.Метрика
Сайт управляется системой uCoz